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NATIONAT, ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2145

LIFT-CANCELLATION TECHNIQUE IN LINEARIZED
SUPERSONIC—WING THEORY

By Harold Mirels

SUMMARY

A lift-cancellation technique is presented for determining
load distributions on thin wings at supersonic speeds. The tech-
nique retains certain features of the method recently introduced
by Theodore R. Goodman, while simplifying and generalizing others.

| A general expression is derived for the load distribution over
a cancellation wing. This expression permits the determination of

| 1ift distributions on wings that cannot be solved by cancellation

* techniques based on the superposition of conical flows. The bound-
ary conditions for either a subsonic leading edge or a subsonic
trailing edge can be satisfied. Applications of the expression to
swept wings having curvilinear plan forms and to wings having
reentrant side edges are indicated.

INTRODUCTION

The method of lift cancellation for obtaining the lift dis-
tribution on thin wings at supersonic speeds was first suggested
in reference 1. The lift distribution on a given wing is deter-
mined by canceling excess 1lift, through the use of a "cancellation
wing," on a related plan form having a known loading. This approach
has been applied by several authors (for example, references 2 to 4).
The expressions provided in reference 1 are applicable for wings
that can be generated by the superposition of conical fields.

A procedure is presented in reference 5 for determining lift
on a more general class of plan forms than can be handled by coni-
cel superposition. The method utilizes a surface distribution of
doublets and an inversion by means of Abel's integral equation and
is equivalent to a lift cancellation,
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This report, prepared at the NACA Lewis laboratory, retains
certain features of reference 5 (that is, the use of a surface dis- Y
tribution of doublets and an inversion by means of Abel's integral
equation), whereas other features are simplified and generalized.
The simplification consists in eliminating steps in the procedure
for obtaining 1ift distributions. The generalization consists in
determining a solution that can be made to satisfy the boundary
conditions for either a subsonic leading edge or a subsonic trailing
edge (Kutta condition). The method of reference 5 yields only the
Kutta solution. The lift-cancellation technique developed herein
is illustrated by several examples.

In a concurrent investigation (reference 6), source distribu-
tions and integral-equation formulations have been applied to obtain
the loading on a special series of cancellation wings. Reference 7
employs some of these cancellation wings for the determination of
1lift and moments on swept wings.

THEORY .

The usual assumptions of an inviscid fluid and small perturba-
tions are made. The velocity field consists of the free-stream 1
velocity U (teken in the positive x-direction) plus the perturba-
tion velocities u, v, and w. The wing boundary conditions are
specified in the 2z = O plane.

‘ The local 1ift coefficient ACp may be expressed in terms
of Au. That is, '

_pppr _ 2(up-up) _ 2py (1)

C
ACp q U U

(A1l symbols used in this report are defined in appendix A.) Inas-
much as the local 1lift coefficient is directly proportional to Au,
Au will be referred to as "lift" in later developments.

Lift-Cancellation Method

The 1lift distribution on a given wing is to be determined by
canceling excess lift on a related wing with a known loading. The
method is illustrated in figure 1. The wing for which the 1ift .
distribution is desired is shown in figure 1(a) The solution can
be expressed as the two-dimensional wing (fig. 1(b)) minus a can-
cellation wing (fig. 1(c)). The loading in region I of the v
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cancellation wing equals the loading in the corresponding region of
the two-dimensional wing and the upwash w in region II of the
cancellation wing is zero. The loading of the two-dimensionsal wing
minus that of the cancellation wing satisfies the boundary conditions
for the flow about the given wing and is the desired solution.

The fundamental problem in the lift-cancellation method is then
to determine the 1lift in region II of a cancellation wing subject
to the condition w = O in this region and with the assumption of
a known loading in region I. Solution of this problem is presented
in the following sections.

Derivation of Lift-Cancellation Equations

The 1ift distribution in region II will be expressed in terms
of quantities in region I.

Consider the cancellation wing shown in figure 2. The portion
of the leading edge to the left of the origin coincides with a Mach
line. The portion of the leading edge to the right
(designated r = ri(s)) is shown as a supersonic edge, although no
restrictions as to a subsonic or supersonic edge are imposed. (A
plan-form edge is subsonic or supersonic depending on whether the
component of the free stream normal to the edge is subsonic or
supersonic.) The line designated r = rz(s) separates region I
and region IT and is assumed to be subsonically inclined to the
free stream at all points. This line corresponds to a plan-form
edge of the wing for which the 1lift distribution is desired.

General solution for load distribution on cancellation wing. -
The upwash field in the z = O plane (due to an arbitrary distribu-
tion of vorticity Au and Av) may be written, from reference 8,

_ EE [}y-yo)Av-+(x-xo)Au] ax, dy,

2n 3/2 (2)
v [(x-20)2-B2(y-3,)2]

The symbol f——— designates the finite part of an infinite integral,
as defined in reference 9. Application of the finite-part concept:
to linearized supersonic-wing theory and the evaluation of the finite
part of an infinite integral are discussed in references 8 and 10.
For the present, it will suffice to state the fundamental definition
of the finite part of an integral with & 3/2—power singularity,
namely,
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X X
[\ £(x)ax, [f('xo)-f(x)]dxo_ 27 (x) (3)
(-2 ) 372 T )2
a a

(x-x,)

By a transformation to the Mach coordinates of reference 11,

x =b§1 (s+r) r = l% (x-By)
1l M
vy =% (s-r) s = 55 (x+By) ? , (4)
elemental area = 28 dr ds
M2 J

equation (2) becomes

bjif\ (s-8,) 5—— + (r- ro) BN? dro ds,
(5)
r ro)(s—so]3/2

Upon substitution of the limits of integration, as indicated in
figure 2,

GWg

BAW dr
M

Y7 B L\ (s-s )3; b/q (r-r )l

aAcp
____7_ 553 (6)
(s-s,) (r-r ) (e )32

-

L62T
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Integrating by parts, noting that AP =0 at ry = rl(so), and
‘recalling the definition of the finite part (equation (3)) yield

r A )
dr
5%, = lim AP . fo 1 AQ drg
r~r ) 172 .—ro—ar (r-ro)l;2 rr(5.) e (r-rg 3/2
r; (s,) 1 ri(so)
T
=_ 1 4% o (7)
2 (r_ro)372 |
rl(so)
Thus

BN? dr
=-1 AQ are
(s-s4) ; (r-r, ) 2 (s-5, ; (r-r ) (r-r)2/2
|

(8)

Similarly, reversing the order of integration (with appropriate
changes in limits of integration), integrating by parts, and then
returning to the original order of integration establish the identity

aAcp ar
= - .]; ACP dr
(s-s )1; (r-r )3 2 (s-s )3; (r-r )3
I‘l S

(9)
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The right side of equations (8) and (9) are identical. Equation (6)
can now be written as

M ACPd.ro
v “‘Tf‘f Y

(r-r )

For points in region II, w = O and equation (10) becomes

) r
_ ds, , AP drg '
AU R
0 (o] rl(s ) o
‘ o)
or
3
~ G(r,s,) ds, 111
= O _?;f;;;37§' (11v)
where
r
AP ar
G(I‘,SO) = —(—;—r——jaoﬁ (12)
rl(so) o

Equation (11b) is an integral equation for the unknown function
G(r,s5). The solution (appendix B) is

G(r,sy) =0 (13)
Thus,
r rz(s ) r
& ar, APy dr A®.__dr,
0 = ——————575 = .—--——-——.37§ + ____11375
(r-r, (r-r,) (r-r,
ry(sg) ri(sg) r,(s,)

-y

L6zt



NACA TN 2145 7

or
r rz(so)
#ppy dry AP dro (14)
(r-z )3/ (z-r )372
ro(s)  ° ri(s))  °

The right side of equation (14) will be considered known. Equa-
tion (14) is then an integral equation for NPII. The solution
(appendix B) is

r,(s)
A’r-r (s) M. ar
4Py = ”‘“‘;3——‘ - (15)
(r-ry) Nra(s)-ry
rl(s)
Equation (15) indicates that the doublet strength in region II,
namely APy, can be obtained by a line integration along s, = s

o]
in region I. The geometric interpretation of the various terms in
equation (15) is shown in figure 3.

It can be shown, by expanding de in a Taylor's series about
T = rz(s), that equation (15) yields a continuous solution
(&1 = &P1) &t r =rp(s). (A discontinuity in AYP implies a
lifting line (reference 12) and is unrealistic.)

The 1lift distribution in region II can be expressed as

0Py _ P11 3r | MPr7 s
ox dr ox 35 ox

H

AuII

M {9 )
= 25 (5; + 5;) NpII

or, from equation (15),

rg(s)

2B py . = (55 + 2 ) _Lflféfil A &Py drg
= 3s n (s) (r-ro)A’rz(s)-ro
r, (s

(16)
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Differentiation yields (See appendix C.)

rs (s)
A’r- z(s Aup dr
Ay = (r-r )A)rz(s) ro

rl( s)

rz(s)

drs(s)
gs (BAuI—AvI)dro . (178)

ZBnA’r-rz(s) rl(s) AJrz(s)-ro

Equation (17a) is the desired expression for the lift distrlbution
in region II in terms of quantities in region I. .

Consider Aury to comnsist of two components, Aurp' and

Au__", where Au..' and Au_.." are the first and second terms
II 11 IT

on the right side of equation (17a), respectively. Investigation
of the integrals indicates that at r = rp(s), Aury' = Aug;

whereas Aury", in general, has a half-order singularity.

When region II is to the right of region I (fig. 3(b)), the
integration for Augy; is conducted along the line ro =r and

may be written as

AU.II

s (r)
A’s -s (r Aup ds_
o (2) (s- so)A’sz(r) -sg
Si\T

sz(r)
(BAuI+AvI )ds o

1
2Bn Ms-sz(r) o () A,sz(r)-so
1

dsy(r)

(17v)
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Discussion of equations {17a) and (17b). - In the paragraph
preceding equation (2), the line r = ry(s) was described as sub-

sonically inclined at all points to the free stream. This condition
is necessary so that the inner integral in equation (1la) (that is,
G(r,so)) can be equated to zero for all points in region II., If

this restriction on r = rz(s) is not satisfied, the development

beyond equation (1lla) becomes invalid. The derivation of cancella-
tion equations when r = r,(s) is supersonic was not undertaken

because such problems can be solved more simply by other methods.

In regard to the boundary conditions, it has been assumed that
Au; is specified. Equations (17a) and (17b), however, indicate

that a knowledge of Avy 1is also required in order to obtain a
solution for Augyy. Two possibilities exist, as illustrated in

figure 4. In the first case (fig. 4(a)), region I is upstream of
region II (along the line r = ro(s)) and Avy 1is uniquely defined

by the specified AuI according to the relation

X

d
AVI = g}; AuI d.Xo (188,)

x, (¥)

The integration is conducted along lines of constant ¥y. In the
second case (fig. 4(b)), region II is upstream of region I (along
the line r = ry(s)) and the expression for Avy in region I

(for y<0) is

x5(y) x
dvy = g% pupy dxg + pug dx, (18b)
-By xo(y)

Equation (18b) indicates that & knowledge of Aupy 1is required in
order to find Avy., But Avy must be known (equation (17a)) before
Auyy cen be found. Thus, the solution for Aury from a specified
Aup 1is not unique for the configuration of figure 4(b) and an
additional boundary condition must be imposed. The line r = rz(s),
however, corresponds to a plan-form edge of the airfoil whose load
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distribution is desired. The situation indicated in figure 4(b)
occurs when r = rz(s) corresponds to a subsonic trailing edge.

The additional condition to be imposed is therefore the Kutta con-
dition. In terms of the cancellation wing, this condition requires
that the perturbation velocities be continuous in crossing r = rz(s).

Solution for Aury satisfying Kutta condition at r =‘r2(s). -

It will now be shown that when the Kutta condition is imposed at
r = rz(s), the appropriate Avy distribution is such as to make

the second integral in equation (172) identically zero; that is,

rz(s)
BAu -AvI
=0
e (s) [ (s)- r]l/z
1
) AP
or, inasmuch as pAur-4vy =M Bro’
20 e
r— dI'o
1/2
v (s) I:rz(s) r:‘

This concept and its proof follow from a suggestion of H. S. Ribner
of the NACA Lewis laboratory.

Thus, from equation (7), (12), and (13),

r
80,
————-——77- (19)
)t

T (s) r-To

for all points (r,s) in region II. Therefore,

r2(s) a8 wI i 3P
dro 5;;—— dro (20)
(r-r o) 172 (r-ro)1;2

ra(s)
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Upon teking the limit as r approaches ry(s), equation (20)
becomes

rz(s) [ r ]
AP OAP 1
3, o . e 1)
= im - '——"‘"——‘7— 2
E%z(s)-ré]l/z r — ry(s) (r-ro)l 2
rl(s) L rz(s) .

However, aN?I/aro must be continuous in the vicinity of ry(s).

(The perturbation velocities on the basic wing can be discontinuous
only along Mach lines or along plan-form edges. Inasmuch as
r = rz(s) is neither of these cases, all derivatives of A¢& must

be continuous in the vicinity of r = rz(s).) When the Kutta con-

dition is imposed, BNPII/BrO is therefore also continuous (and
bounded) in the neighborhood of r = ro(s). Then, using a mean
value for JOAPyy/dr,,

OAPry
lim To o
r—>ry(s) (s) (r-ro)l;2

I'zs

OMP1r arg

lim > ———-———7—
N AN
I'z S

]

=0 (22)

Therefore

ra(s)
2,

&, %o

[®)

r, (s) [?Z(S)_ré]l/z

which was to be proved,
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The solution for AuII that satisfies the Kutta condition at
r = rp(s) is then, from equations (17a) and (23),

rz(s) ‘
AY /v r-rz(s AuI dro (248.)
I = ‘(r-ro)hlrz(s)-ro

r(s)

for the wing of figure 3(a). Similarly,

sz(r)A
Au.. = As-52(r) dur % (24Db)
1T n . (e (s_so)Alsz(r)—so
1

for the wing of figure 3(b).

An alternate derivation of equations (24a) and (24b) (appen-
dix D) indicates that only solutions satisfying the Kutta condition
will result from the integral equation formulations of reference 5.

Sidewash in region II. - An expression for Avir can be obtained

by differentiating equation (15) with respect to y. The result is

[er(s)
pvgp = l\/r-rz(s) Avy drg
n
LJTl(S) (r-r )A’rz(s) -r,
dro(s) Tz(s)
1+ “‘%g‘- BAup-Avy
—_— —_—ar
ZnA,r-rZ(s)J r1(s) I\’rz(s)-ro )

Similarly, for region II to the right of region I,

-

<

L6321
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Sz(r)

ds sz(r Avy ds,
A'VII +
(s-so)hlsa(r)-so

sl(r
dSZ(r) sz(r) .
1+ BAu +AV_ .
——— s
2!!’\,8 sz(r o () /\Isz(r)-so ° ‘
1 r

When the Kutte condition applies, these equations become,
respectively,

2(5)
A A’r r.(s) Av. dr
v ,
- (r-r )N’rz(s) ro
rl(s
and
Sg(r)
A’s sz(r | Avy dsg
Avyy =

&y (r) (s-s )A’sz(r) -8,

It should be noted that when r = rz(s) corresponds to a subsonic
trailing edge, Avy, as well as Avyp, is not generally known.

The preceding expressions are therefore primarily useful for those
problems where r = rz(s) corresponds to a subsonic leading edge.

APPLICATIONS

The loading in region II of & cancellation wing is given by
the line integrals of equation (17a) or (17b). When the Kutte
condition is imposed at a subsonic trailing edge, the expressions
reduce to equations (24a) and (24b). These equations can be used
to find the load distribution on a large variety of wings that
cennot be solved by cancellation techniques based on conical
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superposition. Wings witin curvilinear plen forms or arbitrary
camber are examples. In each case, however, the solution for the

related wing must be known.

The equations are applied in several illustrative examples.
Only the solution associated with the cancellation wing is con-
sidered. The complete solution consists in the loading of the
related wing minus the loading of the cancellation wing.

Leading-Edge and Side-Edge Cancellations

In these cases, the 1lift to be canceled is upstream or to the
side of the plan form for which the loading is desired (figs. 5
and 6).

Tip region of swept wing. - The loading in the region influ-
enced by the side edge (IIa and II;, of fig. 5) of a swept wing
having a subsonic leading and a supersonic trailing edge can be
obtained by canceling excess 1ift on a triangular wing. The Kutta
condition is applied across the portion of r = rp(s) influencing

region II,. The 1ift to be canceled in region I is (reference 13,
equation (23))

A = HO%x - HBz(s+r) (25)
I '\Iezxz—ﬂzyz 62 (s+r)2-(s-r)2

vhere H and 6 are constants defined in appendix A. The doublet
distribution in region I,, again from reference 13, is

AQDI = H/\Iezxz-—ﬁzyz = E}%I\lea(sw)z-(s-r)z
a
from which
AV. = Nr, = = Bpy = - HB(s-r) (26)

I 9
a J ,\, ezxz_ﬁzyz ,\[ 02 (s+r)z_ (s_r)z

The sidewash distribution in region I (that is, AvIb) could be

found by an integration of the type indicated in equation (18b). A
knowledge of AvIb, however, is unnecessary in the present problem

because the Kutta condition is applied for region II;.

Y

L621e
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The loading in region IIa is obtained by substituting equa-

tions (25) and (26), with r replaced by r,, into equation (17a),
which yields

rz(s)
GZA,r-rz(s)yj\ (s+ro) dro
o
(z-

ro)AJ;Z(S)-rONIGZ(s+r°)2-(s—ro)z

Aurr, =

G [

dr

w1 &2 S]f [62(s4r_)+(s-7, ) Jar, -
s

21 Ar- 2( rz(s)-ro t\[ez(s»rro)z-(s-ro)2

For region II;, the Kutta condition applies and

rg(s)
ezA,r-rz(s) (s+ry) drg
§ (r-1ro)

Au

IL, ro(s)-ro '\]52(S+ro)z-(s-ro)z

(28)
Equations (27) and (28) reduce to elliptic integrals of the first,

second, and third kind upon transforming the variable of integra-
tion from r, to W, according to the relation

H
I

o = 1+9 [_(1 9)s+azwo] (29)

where

&, (1+6)r2(s)—(l-6)s

Equations (27) and (28) may then be written
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2 pr-
ugy, - ill /iidggﬁs) {-(s+ri(l+e) {}I(%,n,k) —'II(¢,n,k;] ]

o o) - R -]

n Nr-ro(s)

[F (-g-,k) ; F(¢,kﬂ} (30)

and

2Nrrn(3) | (o,
AuIIb =H9 ni&zg(S) (s+rl(1+6) [’II(%,n,k) R II(¢,n,ki] _

‘:F (-.’Zi,k) - F(¢,k):| } | (31)

where
k = %ég aZ. a = (1+9)_r—(1-9)s
!
g = sin~ 1Al —= 8 = (146) ry(s)-(1-8)s
82
a
n=--2 8y = (1+8) r (s)-(1-9)s
a 2

Reentrant side edge. - A plan form has a reentrant edge if a
line of constant y intersects the plan form at more than two
points.

The load distribution in the region influenced by the reentrant
side edge is to be determined for the wing of figure 6. The side




NACA TN 2145 17

edge is first, for simplicity, the straight line r = Kps, which

is a subsonic trailing edge across which the Kutta condition is
applied. The side edge then alternately becomes a subsonic leading
and a subsonic trailing edge. The load distribution in region I is

simply the Ackeret value Auy = g%g, and Avy = 0., Regions Il,,
a

Iy, and IIc are considered separately.

Region IIg.

From equation (24a) with Aug = E%H

Kz S

Au _ /\fr-Kzs 2aU dr,
I, = "%
e B(r-ro)h’Kzs-ro

‘ - Ko+l
4aU oo g [ (E2tl)s (32a)
Br r-Kzs

_tan 1, by
AuIIa = “Bx tan E-(@ty_y-y (32v)

[}

or, in Xx,y-coordinates

Region TIIy,.

A knowledge of AvIb is required. From equation (18b),

v/ L] b4
Q |4aU 1 X,tBy 20U
-9 |4 - 2o ax
A1, = 37 | Ba e Nplaz ) o * 5 °
-By y/my
K,+1
=2 _ oqy A2 (33)
Kp-1
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induces lift in region I'. The cancellation of 1lift in region I!
induces 1ift in region I", and so forth. Each of these cancella-
tions is handled as previously described. These computations are
very tedious when 1lift is induced upstream of a subsonic leading
edge (for example, region I' of fig. 8), inasmuch as a knowledge
of the sidewash (AvI,), as well as of the 1lift distribution

(AuI:), is needed in order to continue the cancellation process.
Numerical methods are generally required.

Successive cancellations are discussed more extensively in
references 3 and 4.

SUMMARY OF ANALYSIS AND APPLICATIONS

A general expression was determined for the 1ift distribution
over a cancellation wing. The expression is valid when the plan-
form boundary (on cancellation wing) separating the region of zero
upwash from the region for which the 1ift is specified is everywhere
subsonically inclined to the free stream. This expression permits
the determination of 1ift distributions on wings that cannot be
solved by cancellation techniques based on conical superposition.
The boundary conditions for either the flow about a subsonic leading
edge or a subsonic trailing edge can be satisfied.

The lift cancellation technique was illustrated for swept wings
having curvilinear plan forms. Leading-edge and trailing-edge
cancellations were considered. In addition, the loading in a region
influenced by a reentrant side edge was found.

Lewis Flight Propulsion Laboratory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, January 16, 1950,

TAYAN
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APPENDIX A

SYMBOLS

The following symbols are used in this report:

F(§,k)

G(r:so)

(148)r-(1-6)s
(1+6)r(s)-(1-6)s

(140)rp(s)-(1-8)s

PR-P
local 1lift coefficient,

constant
root chord of swept wing

elliptic integral of second kind,

sin @
N1-k2 o 2
——— d%
2
o N1-w,

elliptic integral of first kind,
sin ¢

E(¢:k) =

d
F(¢)k) = wo

V(l-m ) (1-kfw ?)

function of r and s, defined by equation (12)

2al)
BE <§,'\} 1-62 >

slope of plan-form edge in r,s-coordinates,

modulus of elliptic integrals

dr/ds

23
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Au =
Av =
X, X,

y}yo

Z,%,

TI($,n,k)

NACA TN 2145

Mach number

slope of plan-form edge ip x,y-coordinates, dy/dx
parameter of elliptic integral of third kind

local static pressure

1

2
z PU

Mach coordinate system (equation (4))

free-stream velocity

perturbation velocities in x-, y-, and z-directionms,
respectively

up-ug (proportional to local lift)

VT -'VB

Cartesian coordinate system

angle of attack

/\/Mz—l

semivertex angle of triangular wing
B tan &

elliptic integral of third kind,
sin ¢
aw,

2y

(1+n ©,2) ’\f(l-ka ©,%)(1-0,
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P density

T -area of integration

¢ amplitude of elliptic integrals

P perturbation velocity potential

A doublet strength, ®p-Pp

We integration variable

Regions:

I region on cancellation wing for which loading is
specified

IgsIp, o o subdivisions of region I

II region on cancellation wing for which w =0

171 additional region on cancellation wing for which

w=0

Special designations:

r =ry(s) r as function
s = s1(r) s as function
y = y1(x) y as function
x = %1(y) x as function
r = rz(s)~ r as function

[}
"

so(r) s as function

and so forth.

of

of

of .

of

of

of

along plan-form boundary 1
along plan-form boundary 1
along plan-form boundary 1
along plgn-form boundary 1

along plan-form boundary 2

along plen-form boundary 2
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Subscripts:
1,2,3

I,I1

B

T

NACA TN 2145

refers to plan-form boundaries 1, 2, and 3, respectively
refers to regions I and II, respectively
bottom surface of z = O plane

top surface of z = O plane

variable of integration




NACA TN 2145 27

APPENDIX B

SOLUTION OF INTEGRAL EQUATIONS

Consider the following integral equation (in the notatiom of
the appendix in reference 5), where the function f(x) is assumed
known and the function u(f) is to be determined:

€

1297

X

(t) at
f(x) = 4
o (1-5)3;2

f\x
| a®)-ux)Jat  2ux)

= (B1)
(x-1)3/2 (x-2)1/2
Ja
After an integration by parts, equation (Bl) may be written
' X
_f(x) __uw(a) _ | u'(f) at (B2)
2 (x—a)l/2 . (x_g)l 2

Equation (B2) is now an integral equation of the Abel type. The
continuous solution for u(f) is (reference 14)

A

1 f(x) dx
u(z) = - 5= z;ji;i7§ (B3)

evaluated at z = . This result is presented in reference 5.

Equation (11b) corresponds to equation (Bl) with u(§) = G(r,s,)

and f(x) = O. The solution for G(r,s,), according to equa-
tion (B3), is then

G(r,sy;) =0 (13)
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Equation (14) corresponds to equation (Bl) with

g = Ty o a = TZ(So)
ro(s,)
X=r f(x) = - ———1;33?5
rq(sg)
u(g) = ACPII

The solution for A¢&I according to equation (B3) is then

z rz(so)
1 dr N@I drO
BPrr = 3¢ (v \3/2
Z-Tr r-r
ra(sg) V¥ " ry(sg) (7770

After reversing the order of integration and integrating,

rz(So)

"o - A’z-rz(so) ‘ &py dr,
1 . " (z-ro)A’rz(so)-ro

rl(so)

Equation (B5), evaluated at z = r and S, = s, yields

>rg(s)

xpr N’r—rz(s) APy drg
1 =——T
T (r-ro)A’rz(s)-rO

rl(s)

The derivation of equatlon (15) is similar to that for equa-
tion (16) of reference 5.

»

L6ZT

(5)
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APPENDIX C

DIFFERENTIATION TO OBTAIN Augp

The differentiation indicated in equation (16)

rz(s)

2By - <§_ s 5@.) Ar-rp(s) f APy drg (16)
M T ? n rl(s) (T‘ro)”’rz(s)'ro

is to be conducted.
First

ary(s) (2

A dr

ds
M SYIr zxA’r-rz(s) v (s) (r—ro)A,rz(s)-ro

+

rz(s)
Nr-r5(s) (a d
———a e — i +
n or 9o

__) A%, ar, (1)
2(s)-1,

s r1(s) (r-ro)A’r

Inasmuch as NPI is a function of r, and s,

ra(s) ' ry(s)

= =
T v (s) (r-ro)A’rZ(s)-ro r (s) (r-ro)zﬁJrz(s)-ro

(c2a)
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and

L8eT .

rz(S) I‘z(s aA@I

0

+
3s (r-r )A’rz(s) To L/:1(s) (r-r )Alrz(s) To

rl(s)

(A‘:pI)ro = rz(s) dr,(s) (N$I)r = ry(s) dry (s)
(r-ro)/\’rg(s)—ro ds l:r-rl(s)]/\’rz(s) rl(s) ds
(c2b)

However, (Aqﬁ r = rl(s) = 0 and, by integration by parts,

rz(s) 2(s )aAcp o,
89, ar_ B e=m)

(- o)[rz(s) rjsf rl(s) (r-ro)A/rz(s)-ro

+

rl(

rO
. 20,
lim
I‘o—) rz(s) (r-ro)h’rz(s)-ro} ( )
rl s

so that equation (C2b) can be written as
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ro(s) ro(s)
d Ao

1 dro -
s rl(s)(r-ro)A/rz(s)-ro ry(s) (r-r )A,rz(s) -Ty

Tz(s)
0AP; AP,
d.rz(S) I:Bro (I‘-— O)]

ds

(c3)

(r-ry)A\Jra(s)-rg
rl(s)

Upon substituting equations (C2a) and (C3) into equation (Cl) and
integrating by parts those integrals containing N?I, equation (C1)
finally reduces to

Aury =

(r-r )A/rz(s

rz(s)

rz(s)
i\/rr(s‘/\ Aup dr
r1(s)

drz(s) ,
s (BAuI-AvI) dr

- : (17a)
2BnN r-ro(s) r1(s) Ajrz(s)-ro a
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APPENDIX D

ALTERNATE DERIVATION OF SOLUTION SATISFYING
KUTTA CONDITION AT r = ro(s)

The integral equation formulation in terms of A® (equa-
tion (14)) resulted in a solution that was continuous in A®
(equation (15)) but discontinuous, in general, in the derivative

E%FP Au (equation (17a)) at r = rp(s). In order to obtain a

solution continuous in Au, an integral equation may be formulated
that is similar to equation (14), but in terms of Au rather than

AP, The inversion shown in appendix B should result in a solution

thet is continuous in Au but discontinuous in the derivatives of

Au at r = ro(s).

Consider equation (10) for the w distribution in the
= 0 plane. This equation will be differentiated with respect to
x using a technique introduced in reference 15 (equations (1) to
(3)). The expression for w at any point (r,s) is, from
equation (10),

A¢’dr ds

Dl
o 3/2(r-ro)3/2 (o)

=

- M
B

where T 1is the area abc in figure 9(a). The wing is moved
upstream a distance dx (fig. 9(b)), keeping the coordinate system
fixed in space. The expression for the upwash at (r,s) now

becomes
OA®P
AP dr d
v+8wdx___M ( +a_— > S
3 = 8x 3/2 3/2
(s-8,)""“(r- -r,)

AP dr ds
O o
NCESRAEENEE

(p2)
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The second term on the right side of equation (D2) is zero because
4P = 0 along the leading edge. Subtraction of equation (Dl) from
equation (D2) then yields

Qv M Au dro dso

= - (D3)
ox 8n T(s_so)s/z(r_ro)s/z

ow

For points in region II of a cancellation wing, = ° 0. Thus,
for the wing of figure 3(a),

[ s T
o - dso Au dro (D)
= (5_80)372 (r_ro)372
0 rl(so)

This equation is the same as equation (lla) except that Au replaces
AP, The inversion by Abel's integral equation, for Auyp in terms

of Auy then gives (from equation (15))

ro(s)
dug = _ifZ;szl s (24a)
r1(8) (r-ro) N ra(s)-r,

Inasmuch as the integral equations of reference S5 are formulated
in terms of Au and are inverted by means of Abel's integral equa-
tion, only solutions satisfying the Kutta condition will result
therein.
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7
P
(a) Given wing.
P d N
P \
e x \
w==al 7 w==aU | w=—al
Aushug P Au=Auy /’ ‘Au=Aurt
pad i /
Z - 7 d

(b) Two—dimensional wing.

w=?
Au=AuI

(c) Cancellation wing.

Filgure 1. - Superposition to obtain 1lift on given wing by :
cancelling 1ift on two-dimensional wing. (Given wing equals
two-dimensional wing minus cancellation wing.)
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Flgure 2.

~ Typlcal cancellation

Wingn
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1297

(a) Region I intersected by right forward Mach line from (r,s).

(b) Reglon I intersected by left forward Mach line from

(r,s).

Figure 3., - Geometric interpretation of terms in equations (17a) and
(17v).




38 ' NACA TN 2145

x=x1(y)

y=constant

y =constant

(x,5)

{xqg(y)
/
vr=r2(s)

“!ﬂ“’!”

(b) Region II upstream of region I (along r=r2(s)).

Figure 4. - Possible relations between regions I and II in regard
to determination of AV o

L62T
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S NACA :7‘
(b) Regions II and III not continuously Interacting.

Figure 7. - Typlcal cancellatlion wings for canceling 1ift downstream of
subsonic trailing edge of swept wings.
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Figure 8., - Successlve cancellations.
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TJo
Leading edge S,8,
(a) Original position of wing.
U
Y
A>3
P2l AN
/ N
/ \
Leadlng edge / N
’ [ A
P,Po x’xo ,So

SNACA

(b) Wing moved upstream distance dx.

Filgure 9. — Areas of integration relating to equations (D1) and (D2).
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